General Properties

Glass Types				Neoceram	
				N-0	N-11
Color				Transparent -	White
Thermal Properties	Thermal Expansion Coefficient	×10-7/K	-50~0°C	-6	0
			0~50℃	-4	4
			30~380℃	-1	10
			30~750℃	1	13
	Specific Heat	J/kg•K	25℃	800	800
	Thermal Conductivity	W/m·k	25℃	1.6	1.6
	Heat Resistant Temperature *	€	Continuous	750	800
			Short Term	800	900
	Thermal Shock Resistance **	*C	100×100×3mm Plate	800	550
Optical Properties	Index of Refraction (nD)			1.54	
	Abbe Number (vd)			57	-
	Stress-Optical Coefficient	mµ/cm/kg/cm	25℃	3.1	1 -
Mechanical Properties	Density	×10³kg/m³		2.5	2.5
	Bending Strength JIS R-1601	MPa		170	220
	Vicker's Hardness Hv (0.2)			700	800
	Young's Modulus	GPa		94	86
Chemical Properties	Acid Resistance (5% HCl)	mg/cm²	90°C, 24hrs	0.05	0.1
	Alkali Resistance (5% Na₂CO₃)	mg/cm²	90°C, 24hrs	0.3	0.8
Electrical Properties	Volume Resistivity Log $ ho$	Ω·cm	25℃	13	13
			250℃	7	7
			350℃	5	6
	Dielectric Constant ε		1MHz, 25℃	8	6
			2.45GHz, 25℃		6
	Loss Tangent Tan δ	×10 ⁻³	1MHz, 25℃	19	3
			2.45GHz, 25℃		6

^{*} Heat resistant temperature: Determination of the heat resistant temperature is based on mechanical deformation, and is the temperature of which 100×300×3.8t mm plate specimens (supported to form a 280-mm span) deform by 1 mm after 1,000 hours continuous or 24 hours short term heating.

^{**} These figures are only general values derived by a procedure consisting of heated specimens which are then rapidly cooled by plunging them into water. Thermal shock properties of 100°C signify that specimens have been heated to 110°C and plunged into water at 10°C without exhibiting cracking.

^{*} The figures of the properties are measured, not guaranteed.